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Abstract: After defining a new log-logistic model and studying its properties, some new bivariate 

type versions using “Farlie-Gumbel-Morgenstern Copula”, “modified Farlie-Gumbel-Morgenstern 

Copula”, “Clayton Copula”, and “Renyi’s entropy Copula” are derived. Then, using the 

Bagdonavicius-Nikulin goodness-of-fit (BN-GOF) test for validation, we proposed a goodness-of-

fit test for a new log-logistic model. The modified test is applied for the “right censored” real dataset 

of survival times. All elements of the modified test are explicitly derived and given. Three real data 

applications are presented for measuring the flexibility and the importance of the new model under 

the uncensored scheme. Two other real datasets are analyzed for censored validation.  

Keywords: Bagdonavičius-Nikulin; Farlie-Gumbel-Morgenstern; Clayton Copula; censored 

validation; log-logistic distribution; Barzilai-Borwein; Burr XII Distribution; Censored Maximum 

Likelihood 

 

1. Introduction 

A new univariate version of the log-logistic (LL) model called the Rayleigh generalized log-

logistic (RG-LL) distribution (see Equations (3) and (4) and their corresponding details) is introduced, 

studied, and checked in modeling censored and uncensored real datasets. Following the 

mathematical approach to the development of the RG-LL distribution, some new bivariate RG-LL 

type distributions using Farlie-Gumbel-Morgenstern (FGM) Copula ([1–4]), modified Farlie-Gumbel-

Morgenstern Copula [5], Clayton Copula, and Renyi’s entropy Copula [6] are derived in this paper 

(see Section 3). Two major reasons as to why copulas are of interest to statisticians ([7]): “Firstly, as a 

way of studying scale-free measures of dependence; and secondly, as a starting point for constructing 

families of bivariate distributions.” Specifically, copulas are an important part of the study of 

dependence between two variables since they allow us to separate the effect of dependence from the 
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effect of the marginal distributions. Further future articles could be allocated to study the new 

bivariate RG-LL type.  

The new model is used for modeling three real datasets. The 1st data are an “engineering real-

life data” and consist of 100 observations of “breaking stress of carbon fibers” given by [8]. The 2nd 

data are a “reliability survival data” and called the “survival times”, in days, of 72 guinea pigs 

infected with virulent tubercle bacilli, this data were originally observed and reported by [9]. The 3rd 

data are medical data and called leukemia data. This real dataset gives the survival times, in weeks, 

of 33 patients suffering from acute myelogenous leukemia. These applications are used to illustrate 

the importance, potentiality, and flexibility of the RG-LL model. The hazard rate function (HRF) of 

the 1st and 2nd real datasets is “monotonically increasing”. However, the HRF of the 3rd is 

“decreasing-constant-increasing”. These read datasets are analyzed by [10–17]. 

The RG-LL model has only three parameters. However, its competitive models have at least 

three parameters (or more) as illustrated in Section 5 (Tables A3–A5). It is worth mentioning that, the 

lifetime model with a smaller number of parameters is a favorable one especially when if it gives a 

better (or same) fit. The RG-LL model has the lowest (best) value of the used criteria (see Tables A3-

A5). Therefore, it is recommended to apply the RG-LL model in modeling instead of all the other 

competitive models. For the applied purposes, especially in the mathematical modeling, the RG-LL 

model could be useful in the following applied cases: 

1. Modeling the “asymmetric monotonically right skewed” heavy tail data sets (see second and 

third applications). 

2. Modeling the “asymmetric monotonically right skewed” heavy tail data sets for the first time 

ever (see [18]). 

3. In the engineering field, the RG-LL distribution can be applied for modeling the “breaking stress 

data” which have “monotonically increasing” HRF. As shown in Table A3, the RG-LL model 

proved its superiority against many competitive models. 

4. In “survival analysis”, the RG-LL distribution could be chosen for modeling the “survival times 

data” which have a “monotonically increasing” HRF as illustrated in Table A4. 

5. In the medical field, the RG-LL distribution could be considered in modeling the “leukemia 

data” which have “decreasing-constant-increasing” HRF (see Table A5). 

For these reasons, we are motivated to introduce and study the RG-LL distribution. 
For simulation purposes, the algorithm of “Barzilai-Borwein” (BB) (see [19]) is used via a 

simulation study for assessing the performance of the estimators with different sample sizes as the 

sample size tends to ∞ (for more details, see [20–22]).  For validation purposes and using the BN-

GOF test under the right censored data, we propose a modified chi-square GOF test for the RG-LL 

model. Based on the maximum likelihood estimators (MLEs) on initial data, the modified BN-GOF 

test recovers the loss in information while grouping data and follow chi-square distributions. All 

elements of the modified BN-GOF criteria tests are explicitly derived and given (for more details see 

[20,23,24]). 
Generally, the LL distribution is a continuous model for a non-negative random variables (RVs). 

It is used in survival analysis as a parametric model for events whose rate increases initially and 

decreases later such as mortality rate from cancer following diagnosis or treatment (for more details 

see [25–31]). The LL model has also been used in hydrology in modeling stream flow and 

precipitation. In economics, the LL is employed as a simple distribution of the distribution of wealth 

or income. A RV � is said to have the one parameter LL distribution if its cumulative distribution 

functions (CDF) can be written as: 

���
(�)|(���,����) = 1 −

1

1 + ���
 (1) 

here �� > 0 refers to the shape parameter. A scale and location parameter can be introduced in many 

ways to make (1) a three-parameter distribution. It is worth mentioning that the model in (1) is a 

member of the Pareto Type I distribution. The corresponding probability density function (PDF) of 

(1) is given by 
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���
(�) = ��

�����

(1 + ���)�
. (2) 

The PDF in (2) is a special member from the well-known Burr type XII (BXII) model (see [25–

31]). Based on the family of [15] and using (1), the CDF of the Rayleigh generalized LL (RG-LL) is 

defined by 

��,��,��
(�)|(�,�,��,����) = 1 − ��� �−���(1 + ���)� − 1�

�
� (3) 

the corresponding PDF to (3) is given as 

��,��,��
(�)|(�,�,��,����) = 2�����

�����(1 + ���)����(1 + ���)� − 1�

���{��[(1 + ���)� − 1]�}
 (4) 

For �� = 1, the RG-LL model reduces to the two parameter RG-LL model. For � = 1, the RG-

LL model reduces to the R-LL model (with three parameters). For � = �� = 1, the RG-LL model 

reduces to the R-LL model (with two parameters). The HRF can be derived from ℎ�,��,��
(�) =

��,��,��
(�)

����,��,��
(�)

. Let ℬ = �����|���
(�) > 0�, the asymptotics of the CDF, PDF, and HRF as � → ℬ are given 

by 

��,��,��
(�) |(�→ℬ,����) ∼ �� �1 −

1

1 + ���
�

�

 , 

��,��,��
(�) |(�→ℬ,����) ∼ 2����

�����

(1 + ���)�
�1 −

1

1 + ���
�, 

and 

ℎ�,��,��
(�) |(�→ℬ,����) ∼ 2����

�����

(1 + ���)�
�1 −

1

1 + ���
� . 

The asymptotics of CDF, PDF and HRF as � → ∞ are derived by 

1 − ��,��,��
(�) |(�→�,����) ∼ ��� �− �

1

1 + ���
�

���

� 

��,��,��
(�) |(�→�),���� ∼ 2���

�����

(1 + ���)�
�

1

1 + ���
�

�����

��� �− �
1

1 + ���
�

���

� 

and 

ℎ�,��,��
(�) |(�→�,����) ∼ 2���

�����

(1 + ���)�
�

1

1 + ���
�

�����

  

Figure 1 gives some plots of PDF and HRF for the RG-LL model. From Figure 1 (left panel), we 

conclude that the proposed PDF of the RG-LL model can be “uniform”, “unimodal”, “symmetric” or 

“asymmetric left skewed” (or asymmetric right skewed (see Table A1)). From Figure 1 (right panel), 

the HRF can be “asymmetric monotonically increasing” ( � = 0.95, �� = 0.01, �� = 1.5 ) or 

“decreasing-constant” ( � = 1.5, �� = 0.01, �� = 0.35 ) or “J shaped” ( � = 1, �� = 1, �� = 20 ) or 

“constant” (� = 1.5, �� = 0.1, �� = 0.45). 
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Figure 1. Plots of probability density function (PDF) and hazard rate function (HRF) for the Rayleigh 

generalized log-logistic (RG-LL) model. 

The rest of the paper is organized as follows. In Section 2, some mathematical properties of the 

new model are derived. In Section 3, some new bivariate type versions using “Farlie-Gumbel-

Morgenstern Copula”, “modified Farlie-Gumbel-Morgenstern Copula”, “Clayton Copula” and 

“Renyi’s entropy Copula” are obtained. In Section 4, we provided three applications to real data to 

illustrate the flexibility of the new model. The modified BN-GOF test is presented and applied in 

Section 5. Simulation experiments under censorship for assessing the new test are performed in 

Section 6. Censored validation under real data is considered in Section 7. Finally, some concluding 

remarks are addressed in Section 8. 

2. Properties 

2.1. Moments and Generating Function 

The PDF of the RG-LL model in (4) can be expressed as: 

�(�) = 1 − ���

⎩
⎨

⎧

−�� �
1 − �

1
1 + ���

�
�

�
1

1 + ���
�

�
�

�

⎭
⎬

⎫

���������������������
���,��,�

(�)

. 
 

Expanding ���,��,�
(�) using the power series, we get:  

�(�) = 1 − �  

�

����

(−��)��

��!
�1 − �

1

1 + ���
�

�

�

���

�������������
���,�,���

(�)

�
1

1 + ���
�

�����

. 
 

Applying the generalized binomial expansion to the quantity ���,�,���
(�), we have 

�(�) = 1 − �  

�

��,����

(−��)�����

��!
�

2��

��
� �

1

1 + ���
�

�(������)

�����������
���,�(������)(�)

.  

Again, applying the generalized binomial expansion to the quantity ���,�(������)(�), we arrive at 
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�(�) = 1 − �  

�

����

���
����

(�)�
��

,  

where ���
= ∑  �

��,����
(���)��������

��!
�

2��

��
� �

�(�� − 2��)
��

� and ����
(�)�

��
= �1 −

�

�����
�

��
 is the CDF of the 

exponentiated LL (Exp-LL) model. By differentiating the last equation, we get  

�(�) = � ϒ[��] 

�

����

���,(����)(�), (5) 

where ϒ[��] = −�[��] and �[��]   = ∑
(��)�����������

��!��!

�
��,��,���� �

2��

��
� �

�(�� − 2��)
��

� �
1 + ��

��
�, the PDF  

���,(����)(�) = (1 + ��)�������(1 + ���)�����  (6) 

is the LL PDF with parameters �� and (1 + ��). Similarly, the CDF (2) of RG-LL can be re-expressed 

as �(�) = ∑ ϒ[��]
�
���� ���,(����)(�),  where ���,(����)(�) = 1 − (1 + ���)�����  is the CDF of the LL 

model with parameters ��  and (1 + ��). In terms of beta function of the second type, �(��, ��), 

where �(��, ��) = ∫ ������

�
(1 + �)�(�����)��, the ���  ordinary moment of � can be expressed as 

(see [10,11,16,32–34]): 

��
� |(��(����)��) = � ϒ[��]

�

����

(1 + ��) � �1 +
�

��

, (1 + ��) −
�

��

�, (7) 

By setting � = 1 in (7), we get the mean of �. Similarly, in terms of incomplete beta function of 

the second type, �(�; ��, ��) , where �(�; ��, ��) = ∫ ������

�
(1 + �)�(�����)�� , the ���  incomplete 

moment of � can be written as: 

��(�)|(��(����)��) = � ϒ[��]

�

����

(1 + ��) � ����; 1 +
�

��

, (1 + ��) −
�

��

�, 

The moment generating function (MGF) ��(�) = �(���(��)) of � can be derived from (5) as  

��(�) = � ϒ[��]

�

��,���

(1 + ��) � �1 +
�

��

, (1 + ��) −
�

��

� |(��(����)��). 

2.2. Probability Weighted Moments (PWMs) 

The (�, �)�� PWM of � following the RG-LL model, say ��,� , is formally defined by  ��,� =

�{���(�)�}. The (�, �)�� PWM of � can be expressed as: 

��,� = � ϒ[�]

�

���

(1 + �) � �
�

��

+ 1, (1 + �) −
�

��

� |(��(���)��), 

where 

ϒ[�] = 2��� �
(−1)����������(1 + �)��

�(1 + �)�(1 + ��)!

�

�,��,��,����

(�)��
�

1 + ��

�
� �

(1 + ��)2 − 1
��

� �
�[−(1 + ��)2 + ��] − 1

��
�, 

and (��)��
= ��(�� − 1). . . (1 + �� − ��) is the “descending factorial” and �� is a positive integer. 

2.3. Moment of the Reversed Residual Life 

The ��� moment of the reversed residual life, say ��(�) = ��(� − �)� |(���, ���,���,�,… )�. Then, we 

have ��(�) = ���(�) ∫ (� − �)��

�
��(�). Then, the ���  moment of the reversed residual life of � 

becomes  
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��(�) = ���(�) � ϒ[��]
∗

�

���

(1 + ��) � ����; (1 + ��) −
�

��

, 1 +
�

��

�, 

where ϒ[��]
∗ = ϒ[��] ∑

���

�

�
�
�

� (−1)�����. 

2.4. Numerical Analysis for Skewness and Kurtosis 

The effects of the three parameters for the RG-LL model on the mean (��
� ), variance (Var(Z)), 

skewness (Ske(Z)), and kurtosis (Kur(Z)) are listed in Table A1 (see the Appendix A). The effects of 

the parameter a_2 for the standard LL model on the ��
� , Var(Z), Ske(Z), and Kur(Z) are listed in Table 

A2 (see the Appendix A). From Tables A1 and A2 we note that, the new additional shape parameters 

θ and a_1 have an effect on ��
� , Var(Z), Ske(Z), and Kur(Z). For the RG-LL model, Ske(Z) can range 

in the interval (-10.8325, 3601.587). However, for the LL model, Ske(Z) can range in the interval 

(0.087169, 2.485276). Therefore, the new model can be left skewed and also right skewed, however, 

the LL model can only be right skewed. For the RG-LL model, Kur(Z) can range in the interval (-

174.8386, 13223681). However, for the LL model, Kur(Z) can range only in the interval (3.7409, 

29.5562). 

3. Copula  

3.1. Bivariate RG-LL Using FGM Copula 

First, we start with CDF for the FGM family (see [1–4]) of two random variables (��, ��) which 

has the following form ��(��, ��)|(|�|��) = ��(1 + ��∗�∗). Let �∗ = (1 − �) ∈ (0,1) and �∗ = (1 −

�) ∈ (0,1).  Setting �∗ = 1 − ��(��)  and �∗ = 1 − ��(��)  where �∗ = ��� �−�� ��1 + ��
���

��
− 1�

�

�, 

and �∗ = ��� �−�� ��1 + ��
���

��
− 1�

�

�. 

3.2. Via Clayton Copula 

The Bivariate Extension 

The bivariate extension via Clayton Copula can be considered as a weighted version of the 

Clayton Copula which is in the form �(�, �) = [��� + ��� − 1]
�

�

�. Let us assume that � ∼ RG-LL 

(��, ��, ��) and � ∼ RG-LL (��, ��, ��). Then, setting � = ���,��,��
(�) = �� and � = ���,��,��

(�) = ��, 

the associated CDF of the bivariate RG-LL type distribution will be: 

�(�, �) =

⎩
⎨

⎧ �1 − ��� �−���(1 + ���)�� − 1�
�

��
��

+ �1 − ��� �−���(1 + ���)�� − 1�
�

��
��

−1 ⎭
⎬

⎫
�

�
�

. 

The “�-dimensional extension” can be written as: 

�(��) = �� �1 − ��� �−�� ��1 + ��
���

�� − 1�
�

��
���

���

+ 1 − ��

�
�
�

, 

where �� = ��, ��, ⋯ , ��.  

3.3. Bivariate RG-LL Type via Modified FGM Copula 

Following [5], the (joint CDF) J-CDF of the bivariate modified FGM copula can be expressed as 

�ℰ(�, �) = �� + ℰ�(�)� �(�)� , where �(�)� = ��(�), and �(�)� = ��(�). Here �(�) and �(�) are 
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two absolutely continuous functions on (0,1) with the following conditions: (I)-The “boundary” 

condition: 0 = �(1) = �(0) = �(1) = �(0). (II)-Let  

ℒ� = ��� �
�

��
�(�)� |��(�)� < 0, �� = ��� �

�

��
�(�)� |��(�)� < 0, 

ℒ� = ��� �
�

��
�(�)� |��(�)� > 0, �� = ��� �

�

��
�(�)� |��(�)� > 0. 

Then, 1 ≤ ���(ℒ���, ℒ���) ≤ ∞, where 

�

��
�(�)� = �(�) + �

�

��
�(�),  

��(�) = ��: � ∈ (0,1)  |  
�

��
�(�)�   exists�,  

and 

��(�) = ��: � ∈ (0,1) |  
�

��
�(�)�   exists�.  

3.3.1. Bivariate RG-LL-FGM (Type-I) Model 

Here, we consider the following functional form for both �(�) and �(�) as 

�ℰ(�, �) = �
�1 − ��� �−���(1 + ���)�� − 1�

�
��

× �1 − ��� �−���(1 + ���)�� − 1�
�

��
� + ℰ��(�)� �(�)�  �,  

where 

�(�)�
1

�
= ��� �−���(1 + ���)�� − 1�

�
� |��,��,����,  

and 

�(�)�
1

�
 = ��� �−���(1 + ���)�� − 1�

�
� |��,��,����.  

3.3.2. Bivariate RG-LL-FGM (Type-II) Model: 

Consider the following functional form for both ϑ(u) and φ(w) which satisfy all the conditions 

stated earlier where �(�)|(ℰ���) = �ℰ�(1 − �)��ℰ� and �(�)|(ℰ���) = �ℰ�(1 − �)��ℰ�. 

The corresponding bivariate RG-LL-FGM (Type-II) copula can be derived from: 

�ℰ,ℰ�,ℰ�
(�, �) = ��[1 + ℰ�ℰ��ℰ�(1 − �)��ℰ�(1 − �)��ℰ�].  

3.3.3. Bivariate RG-LL-FGM (Type-III) Model: 

Consider the following functional form for both �(�) and �(�) which satisfy all the conditions 

stated earlier where �(�) = �[���(1 + �)] and �(�) = �[���(1 + �)]. 

In this case, one can also derive a closed form expression for the associated CDF of the bivariate RG-

LL-FGM (Type-III). 

3.3.4. Bivariate RG-LL-FGM (Type IV) Model: 

The J-CDF of the bivariate RG-LL-FGM (Type-IV) model can be derived from �(�, �) =

����(�) + ����(�) − ���(�)���(�). 

3.4. Bivariate RG-LL Type Using Renyi's Entropy Copula 

Due to [6], The J-CDF of the Renyi's entropy Copula can be expressed as �(�, �) = ��� + ��� −

����, then, the associated bivariate MOLBX will be 
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�(��, ��) = �(���
(��), ���

(��)) = −���� 

+�� �1 − ��� �−�� ��1 + ��
���

��
− 1�

�

�� 

+�� �1 − ��� �−�� ��1 + ��
���

��
− 1�

�

��. 

8) 

 

8) 

 

 

Many useful details and other similar work can be found in [35–39].  

4. Uncensored Real Data Applications 

The log-likelihood function (ℓ�(�)) for � is given by 

ℓ�(�) = � ��� 2 + � ��� � + � ��� �� + � ��� �� + (� − 1) � ����1 + ��
���

�

���

 

+ (2 − 1) � ��� ��1 + ��
���

�
− 1�

�

���

− �� � ��1 + ��
���

�
− 1�

�
�

���

. 

 

 

 

The above ℓ�(�) can be maximized numerically via “SAS (PROC NLMIXED)” or “R (optim)” 

or “Ox program (via sub-routine MaxBFGS)”, among others. The components of the score vector  

� ��� =
�ℓ

��
= �

�ℓ� ���

��
,
�ℓ� ���

���

,
�ℓ� ���

���

�

�

  

can be derived easily. 

We provide three real applications to illustrate the importance, potentiality and flexibility of the 

RG-LL model. For these data, we compare the RG-LL distribution, with BXII, Topp-Leone-BXII 

(TLBXII), Zografos-Balakrishnan-BXII (ZBBXII), Marshall-Olkin-BXII (MOBXII), Five Parameters 

beta-BXII (FBBXII), Beta-BXII (BBXII), Beta exponentiated-BXII (BEBXII), Five Parameters 

Kumaraswamy-BXII (FKwBXII), and the KwBXII distributions given in [11–15]. 

The 1st data: Called “breaking stress data”: {0.98, 5.56, 5.08, 0.39, 1.57, 3.19, 4.90, 2.93, 2.85, 2.77, 

2.76, 1.73, 2.48, 3.68, 1.08, 3.22, 3.75, 3.22, 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.40, 

3.15, 2.67,3.31, 2.81, 2.56, 2.17, 4.91, 1.59, 1.18, 2.48, 2.03, 1.69, 2.43, 3.39, 3.56, 2.83, 3.68, 2.00, 3.51, 0.85, 

1.61, 3.28, 2.95, 2.81, 3.15, 1.92, 1.84, 1.22, 2.17, 1.61, 2.12, 3.09, 2.97, 4.20, 2.35, 1.41, 1.59, 1.12, 1.69, 2.79, 

1.89, 1.87, 3.39, 3.33, 2.55, 3.68, 3.19, 1.71, 1.25, 4.70, 2.88, 2.96, 2.55, 2.59, 2.97, 1.57, 2.17, 4.38, 2.03, 2.82, 

2.53, 3.31, 2.38, 1.36, 0.81, 1.17, 1.84, 1.80, 2.05, 3.65}. This dataset consists of 100 observations of 

“breaking stress of carbon fibers” (in Gba). 

The 2nd data: Called “survival times”, in days, of 72 guinea pigs infected with virulent tubercle 

bacilli: {0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, 1.08, 1.08, 1.08, 

1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 

1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 

2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55}. 

The 3rd data: {65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 

4, 2, 3, 8, 4, 3, 30, 4, 43} is called “leukemia data”. This real data set gives the survival times, in weeks, 

of 33 patients suffering from acute myelogenous leukemia. The total time test (TTT) plot (see [40]) is 

an important graphical approach to verify whether the data can be applied to a specific distribution 

or not. The TTT plots of the three real datasets are presented in Figure 2. This plot indicates that the 

empirical HRFs of the 1st and 2nd datasets are increasing. The empirical HRF is the bathtub for the 

3rd dataset.  

We consider the following goodness-of-fit statistics: The “Akaike information criterion” (�AI), 

“Bayesian information criterion” ( �Bayes ), “consistent Akaike information criterion” ( �CA ), and 

“Hannan-Quinn information criterion” (�HQ). Tables A3–A5 (see the Appendix A) give the MLEs, 

standard errors (SEs), and confidence interval (CIs) for all datasets. The same tables give the statistics 

�AI, �Bayes, �HQ, and �CA values for these datasets. 
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Based on the values in Table A3, we conclude that the RG-LL model provides the best fit as 

compared to other competitive models in the three applications with the smallest values of �AI =

302.75, �Bayes = 301.17, �HQ = 299.18, and �CA = 300.92. Based on the values in Table A4, it is 

noted that the RG-LL model provides the best fit as compared to other competitive models in the 

three applications with the smallest values of �AI = 208.01 , �Bayes = 211.11 , �HQ = 207.12, and 

�CA = 209.53. Based on the values in Table A5, it is noted that the RG-LL model provides the best fit 

as compared to other competitive models in the three applications with the smallest values of �AI =

313.44, �Bayes = 316.41 , �HQ = 313.11, and �CA = 313.02.  Figures 2–5 give the total time in test 

(TTT) plots, the estimated CDFs plots, the estimated PDFs plots, and the estimated HRFs plots, 

respectively. Based on Figure 2, the HRF of the three data are “monotonically increasing”, 

“monotonically increasing”, and “decreasing-constant-increasing”, respectively. Figures 3–5 are 

provided for illustrating the superiority on the new model graphically. 

Breaking stress. Survival times. Myelogenous leukemia.

. 

Figure 2. Total time test (TTT) plots. 

Breaking stress. Survival times. Myelogenous leukemia.

 

Figure 3. Estimated cumulative distribution functions (CDFs). 
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Breaking stress. Survival times. Myelogenous leukemia.

 

Figure 4. Estimated PDFs. 

Breaking stress. Survival times. Myelogenous leukemia.

 

Figure 5. Estimated HRFs. 

Based on the values in Tables A3–A5 and  Figures 2–5, we conclude that the RG-LL model 

provides good (and also the best) fits as compared to other competitive models in the three 

applications with smallest values of �AI, �Bayes, �HQ and �CA. 

5. The Modified BN-GOF Test  

5.1. Censored Maximum Likelihood 

Suppose that ��, ��, . . . . . , �� is a RS with right censoring from the RG-LL(�) distribution. The 

observed data ��|(���,�,..,�) = ���(��, ��) are the “minimum of the survival time” ��  and censoring 

time �� for each subject in the sample. Therefore, �� can be written as (��, ��)���,�,...,� where �� = 1 if 

�� is the moment of failure (complete observation) and �� = 0 if �� is the “moment of censoring”. 

The likelihood function can be written as: 

�(�, �) = ����
� ℎ�,��,��

(��)����,��,��
(��)|

 ����������
�
.  
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The log-likelihood function of RG-LL(�) distribution is: 

���
��� = � ��

�

���

�
��(�����) + (�� − 1) �� ��

+(� − 1) �� �� + ��( ��
� − 1)

� − �� ����
� − 1�

�
�

���

,  

where �� = 1 + ��
��, and the score functions are obtained as follows: 

����
���

��
= � ��

�

���

�
1

�
+ ��(��)� − 2�� � ��

�

�

���

��(��) (��
� − 1),

��

���

= �
��

��

�

���

− ����
� − 1�

�
�

���

,  

and 

����
���

���
= � ��

�

���

�
1

��
+ �� �� + (� − 1)

��
�� �� ��

��
+

2��
�� �� �� ��

��
� − 1

� − 2����� � ��
��

�

���

 �� �� ��
���(��

� − 1) .  

The MLEs of the unknown parameters can be obtained using various techniques, either software 

R, “EM algorithm”, or “Newton Raphson” method. 

5.2. The Modified BN-GOF Test for Right Censored Data 

Based on [23,24], the statistic test is defined as: 

��
� = �

1

��

�

���

��� − ���
�

+ �,  

where �� and �� are the observed and the expected numbers of failure in grouping intervals, other 

elements were defined in [20,23,24]. The endpoints �� of � random gouging intervals �� = [����, ��[ 

are chosen so that the expected failure times to fall into these intervals are the same for each � =

1, . . , � − 1, ��� = �����(�), ��. The estimated ��� is defined by 

��� = ��� �
�� − ∑ ��,��,��

(��)���
���

� − � + 1
, ��,  

and ��� = �����(�),�� where ��,��,��
(��) is the cumulative HRF (CHRF) of the model distribution. 

This statistic test ��
� follows a chi-squared model. 

5.3. Choice of Random Grouping Intervals 

Suppose that ��, ��, . . . . . , �� is a RS with right censoring from the RG-LL(�) model and a finite 

time �. The estimated ��� is obtained as follows: 

��� = �1 − �1 + �
�� − ∑ ��,��,��

(��)
���
���

��(� − � + 1)
�

�/�

�

�/��

  

where ��,��,��
(��) is the CHRF of the RG-LL (�) distribution. 

5.4. Quadratic Form of � of the Statistic ��
�  

To calculate the quadratic form � of the statistic ��
�, and as its distribution does not depend on 

the parameters, so we can use the estimated matrices �� , �� and the estimated information matrix �� 

The elements of �� are defined in [20]. 

5.5. Estimated Information Matrix �� 

We need also the information matrix �� of the RG-LL (�) model with the right censoring. After 

difficult calculations and some simplifications, we have obtained the elements of the matrix as 

follows: 
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��̂� =
1

�
� ��

�

���

�
1

�
+ ��(��)�

�

 , �̂�� =
1

�
�

��

��
�

�

���

  

��̂� =
1

�
� ��

�

���

�
1

��

+ �� �� + (� − 1)
��

�� �� ��

��

+
2��

�� �� �� ��

��
� − 1

�

�

, ��̂� =
1

�
�

��

��

�

���

�
1

�
+ ��(��)�  

��̂� =
1

�
� ��

�

���

�
1

�
+ ��(��)� �

1

��

+ �� �� + (� − 1)
��

�� �� ��

��

+
2��

�� �� �� ��

��
� − 1

�,  

and 

�̂�� =
1

�
�

��

��

�

���

�
1

��

+ �� �� + (� − 1)
��

�� �� ��

��

+
2��

�� �� �� ��

��
� − 1

�.  

Then, we obtain the statistic test for the RG-LL (�) distribution with the “right censored” data. 

This statistic follows a chi-squared distribution with � degrees of freedom. 

��
� ���    = ∑

�

��

�
��� ��� − ���

�
+ �� ����̂�� − ∑ ������������

���
��� �

��
�� .  

6. Simulations under Censorship 

In this section we perform a simulation study to consolidate our results. For this purpose, � =

10,000  censored samples (with sizes: � = 25, 50, 130, 350, 500, 1000)  from the RG-LL (�) 

distribution is simulated. 

6.1. Maximum Likelihood Estimation 

We generate the simulated samples with various parameters. Using the R software and �� 

algorithm, means simulated ���s and their mean squared errors (MSEs) are calculated and given in 

Table 1. As shown in these results, the ���s are convergent. 

Table 1. The maximum likelihood estimators (MLEs) and their mean squared errors (MSEs). 

N = 10,000 �� = 0.5 �� = 1.5 θ = 2 

�� = 25 0.5294(0.0096) 0.4621(0.0093) 1.9597(0.0086) 

�� = 50 0.5230(0.0089) 0.4731(0.0079) 1.9623(0.0067) 

�� = 130 0.5178(0.0072) 0.4774(0.0061) 1.9738(0.0052) 

�� = 350 0.5102(0.0058) 0.4822(0.0049) 1.9894(0.0038) 

�� = 500 0.5064(0.0046) 0.4876(0.0035) 1.9912(0.0024) 

�� = 1000 0.5012(0.0033) 0.4933(0.0023) 1.9985(0.0018) 

 a₁ = 1.2 a₂ = 2.1 θ = 1.6 

�� = 25 1.7682(0.0074) 2.1296(0.0068) 1.5523(0.0113) 

�� = 50 1.1721(0.0053) 2.1233(0.0059) 1.5693(0.0096) 

�� = 130 1.1794(0.0042) 2.1188(0.0046) 1.5734(0.0084) 

�� = 350 1.1811(0.0031) 2.1113(0.0032) 1.5837(0.0073) 

�� = 500 1.1896(0.0021) 2.1095(0.0025) 1.5893(0.0058) 

�� = 1000 1.1989(0.0017) 2.1016(0.0019) 1.5974(0.0043) 

6.2. Test Statistic ��  

For testing the null hypothesis �� that the “right censored” data become from the RG-LL model, 

we computed the criteria statistic ��
�(�) as defined above for � = 10,000 simulated samples from 

the hypothesized distribution with different sizes (� = 25, 50, 130, 350, 500, 1000) . Then, we 

calculated empirical levels of significance, when �² > ��
�(�), corresponding to theoretical levels of 

significance (� = 0.10, 0.05, 0.01), we choose � = 5. The results are reported in Table 2. 
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Table 2. Simulated levels of significance for ��
�(�) against the theoretical values. 

N = 10,000 � = 25 � = 50 � = 130 � = 350 � = 500 � = 1000 

ε = 1% 0.0042 0.0053 0.0076 0.0082 0.0091 0.0095 

ε = 5% 0.0443 0.0459 0.0465 0.0473 0.0487 0.0496 

ε = 10% 0.0941 0.0956 0.0962 0.0979 0.0986 0.0992 

Based on Table 2, the test proposed in this work, can be used to fit data from this new model. 

7. Censored Validation under Real Data 

Example 1. Reference [41] has reported survival data on 26 psychiatric inpatients admitted to the university 

of Iowa hospitals during the years 1935–1948. This sample is part of a larger study of psychiatric inpatients 

discussed by [42]. Data for each patient consists of age at rest admission to the hospital, sex, number of years 

of follow-up (years from admission to death or censoring), and patient status at the follow-up time. The data is 

given as: 

1, 1, 2, 11, 14, 22, 22, 24, 25, 26, 28, 30∗, 30∗, 31∗, 31∗, 32,33∗, 33∗, 34∗, 35,35∗, 35∗, 36∗, 37∗, 39∗, 40. 

(*indicates the censorship). We use the statistic test provided above to verify if these data are modeled by RG-

LL distribution, and at that end, we first calculate the ��� s of the unknown parameters 

� = ����, ���, ���
�

= (1.8391,2.538,3.748)�. 

Data are grouped into � = 5 intervals ��. We give the necessary calculus in the Table 3. 

Table 3. Validation results. 

��� 17.23 25.59 31.67 34.85 40 

�� 5 4 6 4 7 

���� 

���� 2.0937 1.9374 1.239 1.0846 2.0934 

���� 2.7187 2.0646 1.0874 0.5437 1.0874 

���� 1.0236 0.8374 0.9138 0.8631 1.3193 

�� 4.6322 4.6322 4.6322 4.6322 4.6322 

Then we obtain the value of the statistic test ��
�: 

��
� = �� + � = 4.9325 + 3.0031 = 7.9356  

For significance level = 0.05, the critical value ��
�  = 11.0705 is superior than the value of ��

� = 

7.9356 (see Table 4), so we can say that the proposed model RG-LL fits these data. We calculated also 

the test statistics ��
� to fit these data to the competing models.  

Table 4. ��
� statistic to all competitive models. 

Model ��
�  Statistic 

RG-LL 7.9356 

MOBXII 8.5632 

TLBXII 8.8319 

KwBXII 8.3415 

BEBXII 8.7196 

BBXII 8.9317 

FKwBXII 8.2413 

WLL 9.4053 

FBBXII 8.1232 

BXII 8.4965 

Example 2. We consider the bone marrow transplant data (see [43]) for patients suffering from acute 

lymphoblastic leukemia. This data consists of time (in days) to death or on study time after an allogenic bone 

marrow transplant for 38 patients. The bone marrow transplant is a standard treatment for acute leukemia. 
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Recovery following bone marrow transplantation is a complex process. Immediately following transplantation, 

patients have depressed platelet counts and have higher hazard rate for the development of infections but as the 

time passes the hazard decreases. Data are given as: 

1, 86, 107, 110, 122, 156, 162, 172, 194, 226*, 243, 262, 262, 269, 276, 350*, 371, 417, 418, 466, 487, 

526, 530*, 716, 781, 996*, 1111*, 1167*, 1182*, 1199*, 1279, 1330* ,1377*, 1433*, 1462, 1496*, 1602*, 2081*.  

We use the statistic test provided above to verify if these data are modeled by the RG-LL 

distribution. Using the BB solve software, we calculate the maximum likelihood estimators of the 

unknown parameters: 

�� = ����, ���, ���
�

= (2.6138,4.9462,8.643)�.  

Then, we grouped the observations into � = 5 intervals ��. The intermediate calculations are 

given in Table 5. 

Table 5. Values of ��� , �� , 


C , and ��  for the second data. 

��� 171.865 325.593 510.362 1245.639 2081 

�� 7 8 6 9 8 

���� 

���� 0.9356 0.8269 0.8139 0.6039 0.4964 

���� 1.4152 1.4153 1.0108 0.4043 0.2021 

���� 1.2093 2.4136 1.5623 0.9462 0.8196 

�� 4.2385 4.2385 4.2385 4.2385 4.2385 

The value of the statistic test ��
� is obtained as follows: 

��
� = �� + � = 4.9563 + 3.946 = 8.9023 

Based on Table 5, the value of ��
� = 8.9023 is less than the critical value ��

� = 11.0705–(for 

significance level � = 0.05), so we can say that these data can be fitted by the RG-LL model. Many 

useful uncensored real-life data sets in life testing, economies, medicine and engineering can be found 

in [44–52].  

8. Conclusions 

In this paper, a new three-parameter version of the log logistic model is introduced and studied. 

Some of its mathematical properties are derived. The new hazard rate function can be “ asymmetric 

monotonically increasing”, “decreasing-constant”, “J shaped”, or “constant”. A simple type copula 

is considered for deriving many bivariate and multivariate extensions using “Farlie-Gumbel-

Morgenstern Copula”, “modified Farlie-Gumbel-Morgenstern Copula”, “Clayton Copula”, and 

“Renyi’s entropy Copula”. Three applications to three real data sets are provided to illustrate the 

flexibility and importance of the new model. Using the approach of the “Bagdonavicius-Nikulin” 

goodness-of-fit test for right censored validation, we propose a new modified chi-square goodness-

of-fit test for a new log-logistic model. The modified goodness-of-fit statistic test is applied for the 

right censored real dataset of survival times of psychiatric inpatients admitted to the university of 

Iowa hospitals. Based on the maximum likelihood estimators on initial data, the modified test 

recovers the loss in information while grouping data and follows chi-square distributions. All 

elements of the modified criteria tests are explicitly derived and given. Three real data applications 

are presented for measuring the flexibility and the importance of the new model under the 

uncensored scheme. 
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Appendix A 

Table A1. Numerical results for ��
� , Var(�), Ske(�), Kur(�) for the RG-LL model. 

� �� �� ��
�  Var(�) Ske(�) Kur(�) 

0.1 10 3 2.3014850 1.07723700 1.2469570 5.644436 

0.25   1.1656230 0.09155918 0.1903485 2.984291 

0.5   0.8348619 0.03179571 −0.1816630 2.910675 

1   0.6320478 0.01499990 −0.3732641 3.035430 

5   0.3565924 0.00409134 −0.5292522 3.217301 

7.5   0.3106052 0.00306466 −0.5423596 3.235840 

10   0.2817936 0.00250640 −0.5489192 3.244724 

12.5   0.2613663 0.00214794 −0.5528574 3.251049 

15   0.2458125 0.00189505 −0.5554835 3.258577 

       

3.5 0.00001 1.5 2.4439090 0.126387700 −0.7106222 3.773512 

 0.001  1.3234170 0.058929280 −0.686609 3.627384 

 0.1  0.5704622 0.022007440 −0.4085326 2.92692 

 0.5  0.3889885 0.012877710 −0.2505082 2.728826 

 1  0.3246634 0.009765043 −0.1830979 2.678376 

 5  0.2064316 0.004609066 −0.04542067 2.635436 

 10  0.1678268 0.003197180 0.0019725 2.639189 

 50  0.1017226 0.001267371 0.0816486 2.667219 

 100  0.08148813 0.000830205 0.1043870 2.674599 

 500  0.04827376 0.000300035 0.1378587 16.01191 

 1000  0.03843619 0.000191606 −3.7303240 35.06832 

 2000  0.03057584 0.000121892 −0.1520501 −8.218386 

 5000  0.02257409 6.675676 × 10⁻⁵ 7.694268 −35.06735 

 10000  0.01793546 4.224229 × 10⁻⁵ −13.52702 110.2359 

 20000  0.01424575 2.669551 × 10⁻⁵ −10.83246 62.76824 

 50000  0.01050316 1.453355 × 10⁻⁵ 22.28915 −174.8386 

       

2 10 0.1 1.662079 × 10⁻¹⁰ 3.56035 × 10⁻¹³ 3601.587 13223681 

  0.5 0.0209009 0.0003730464 1.688587 6.977619 

  1 0.1296743 0.0040855080 0.4852051 2.948691 

  5 0.6492678 0.0055586940 −0.7296955 3.751450 

  6 0.6970608 0.0045386420 −0.8017811 3.969663 

Table A2. Numerical results for ��
� , Var(�), Ske(�), Kur(�) for the RG-LL model. 

�� ��
�  Var(�) Ske(�) Kur(�) 

5.00 1.068959 0.17863230 2.48528 29.5562 

7.50 1.029853 0.06671700 1.33004 9.18867 

10.0 1.016641 0.03540090 0.93667 6.51021 

12.5 1.010606 0.02206170 0.72919 5.56385 

15.0 1.007348 0.01510236 0.59899 5.10838 

17.5 1.005391 0.01100040 0.50908 4.85121 

20.0 1.004124 0.00837532 0.44302 4.69083 

25.0 1.002637 0.00532522 0.35216 4.50848 

30.0 1.001830 0.00368497 0.29246 4.41214 

35.0 1.001344 0.00270154 0.25017 4.35495 
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40.0 1.001029 0.00206550 0.21860 4.31819 

45.0 1.000813 0.00163045 0.19414 4.29314 

50.0 1.000658 0.00131982 0.17299 4.33383 

55.0 1.000544 0.00109017 0.15866 4.26215 

60.0 1.000457 0.00091569 0.14538 4.25213 

65.0 1.000389 0.00078000 0.13416 4.24442 

70.0 1.000336 0.00067239 0.12455 4.23827 

75.0 1.000292 0.00058562 0.11623 4.23332 

80.0 1.000257 0.00051462 0.10895 4.22928 

85.0 1.000228 0.00045580 0.10253 4.22593 

90.0 1.000203 0.00040652 0.09682 4.22313 

95.0 1.000182 0.00036482 0.09171 4.22077 

100 1.000164 0.00032925 0.08717 3.74092 

Table A3. MLEs, SEs and CIs with �AI, �Bayes, �HQ and �CA for the breaking stress of carbon fibers data. 

Model  ��, ���,  ��� , �� , ��  �AI, �Bayes, �HQ and �CA 

B XII  ---, ---, 5.942, 0.1870, ---  382.94, 388.20, 383.010, 385.05 

 ---, ---, (1.28), (0.04), ---  

 ---, ---, (3.4,8.5), (0.1,0.3), ---  

   

MOB XII ---, ---, 1.19,4.83,838.7 305.78, 313.60, 306.00, 308.96 

 ---, ---, (0.95), (4.89), (229.3)  

 ---, ---, (0, 3.1), (0,1.4), (389,1288)  

   

TLB XII ---, ---, 1.35,1.06,13.73 323.50, 331.35, 323.78, 326.71 

 ---, ---, (0.38), (0.38), (8.4)  

 ---, ---, (0.6, 2.1), (0.3,1.8), (0, 30.2)  

   

KwB XII 48.1 ,79.5 ,0.4 ,2.7, --- 303.76, 314.21, 304.20, 308.00 

 (19.34), (58.19), (0.1), (1.1), ---  

 (10.1,86.0), (0,193.6), (0.16,0.5), (0.6,4.8), ---  

   

BBXII 359.68 ,260.1 ,0.175 ,1.12, --- 305.64, 316.06, 306.06, 309.85 

 (57.9), (132.2), (0.013), (0.24), ---  

 (246,473), (0.96,519), (0.14,0.2), (0.6,1.6), ---  

   

BE BXII 0.38, 11.95, 0.94, 33.4, 1.71  305.81, 318.83, 306.50, 311.09 

 (0.1), (4.6), (0.27), (6.3), (0.48)  

 (0.2,0.5), (2.86,2), (0.4,1.5), (21,5), (0.8,2.6)  

   

FKw BXII 0.54,4.22, 5.313, 0.41, 4.152  305.50, 318.55, 306.14, 310.80 

 (0.14), (1.88), (2.32), (0.49), (1.99)  

 (0.3, 0.8), (0.5,7.9), (0.9,9), (0, 1.7), (0.1,8)  

   

ZB BXII 123.101, ---,0.368, 139.247, --- 302.96, 310.78, 303.21, 306.13 

 (243.011), ---, (0.343), (318.546), ---  

 (0, 599.40), ---, (0, 1.04), (0, 763.59), ---  

   

RG-LL 2.504, 0.003, 0.739, ---, --- 302.75, 301.17, 299.18, 300.92 

 (0.158), (0.000), (0.072), ---, ---  

 (2.2, 2.8), ---, (0.56, 0.84), ---, ---  
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Table A4. MLEs, SEs, and CIs with �AI, �Bayes, �HQ and �CA for the survival times data. 

Model  ��,  ��� , ���, �� ,  �� �AI, �Bayes, �HQ and �CA 

B XII ---, ---, 3.102, 0.465, --- 209.6, 214.2, 209.77, 211.41 

 ---, ---, (0.538), (0.077), ---  

 ---, ---, (2.1, 4.2), (0.31, 0.6), ---  

   

MO BXII  ---, ---, 2.259, 1.533, 6.760  209.74, 216.61, 210.09, 212.44 

 ---, ---, (0.864), (0.907), (4.587)  

 ---, ---, (0.5, 3.95), (0, 3.3), (0, 15.8)  

   

TL BXII ---, ---, 2.39, 0.458, 1.796  211.80, 218.63, 212.15, 214.51 

 ---, ---, (0.91), (0.24), (0.92)  

 ---, ---, (0.62,4.2), (0, 0.9), (0.002,3.6)  

   

TL BXII ---, ---, 2.39, 0.458, 1.796  211.80, 218.62, 212.15, 214.53 

 ---, ---, (0.91), (0.244), (0.92)  

 ---, ---, (0.6,4.2), (0, 0.9), (0.002,3.6)  

   

Kw BXII  14.11,7.42, 0.525, 2.274, --- 208.80, 217.86, 209.40, 212.40 

 (10.81), (11.85), (0.28), (0.99), ---  

 (0, 35.3), (0.30.65), (0, 1.1), (0.33, 4.2), ---  

   

FBB XII 0.621, 0.549, 3.838, 1.381, 1.665 206.81, 218.20, 207.73, 211.31 

 (0.54), (1.01), (2.79), (2.31), (0.44)  

 (0, 1.7), (0, 2.5), (0, 9.3), (0, 6), (0.8, 4.5)  

   

FKwB XII 0.558,0.31, 3.999, 2.131, 1.48 206.51, 217.90, 207.42, 211.01 

 (0.44), (0.31), (2.08), (1.83), (0.36)   

 (0, 1.4), (0, 0.9), (0, 3.1), (0, 5.7), (0.76, 2.2)  

   

RG-LL 3.3, 0.004, 0.386, ---, --- 208.01, 211.11, 207.12, 209.53 

 (0.24), (0.002), (0.041), ---, ---  

 (2.8, 3.8), (0, 0.008), (0.32, 0.48), ---, ---  

Table A5. MLEs, SEs, and CIs with �AI, �Bayes, �HQ and �CA for the leukemia data. 

Model  ��, ��� ,  ���, �� , ��  �AI, �Bayes, �HQ and �CA 

B XII ---, ---, 58.7, 0.006, --- 328.21, 331.19, 328.61, 329.20 

 ---, ---, (42.4), (0.004), ---  

 ---, ---, (0, 141.8), (0, 0.01), ---  

   

MOB XII  ---, ---, 11.838, 0.078, 12.25  315.54, 320.01, 316.38, 317.04 

 ---, ---, (4.368), (0.013), (7.77)  

 ---, ---, (0, 141.8), (0, 0.01), (0, 27.5)  

   

TLB XII ---, ---,0.281, 1.882 ,50.215  316.30, 320.73, 317.09, 317.76 

 ---, ---, (0.29), (2.4), (176.5)  

 ---, ---, (0, 0.9), (0, 6.6), (0, 396.2)  

   

KwB XII  9.201, 36.428, 0.242, 0.941, ---  317.36, 323.31, 318.79, 319.33 

 (10.1), (35.7), (0.167), (1.06), ---  

 (0, 28.9), (0, 106), (0, 0.6), (0, 3), ---  
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BB XII 96.10, 52.12, 0.10, 1.23, --- 316.50, 322.45, 317.89, 318.50 

 (41.20), (33.49), (0.02), (0.34), ---  

 (15, 176.8), (0, 117.8), (0.6, 0.15), (0.6, 1.9), ---  

   

BEB XII 0.087, 5.007, 1.561, 31.270, 0.318  317.58, 325.10, 319.8, 320.10 

 (0.08), (3.851), (0.01), (12.9), (0.03)  

 (0, 0.3), (0, 13), (1.5, 2), (5.9, 57), (0.3, 0.4)  

   

FBB XII 15.19, 32.5, 0.23, 0.58, 21.86  317.87, 325.36, 320.08, 320.37 

 (11.6), (9.87), (0.09), (0.07), (35.55)   

 (0, 38), (12.7, 51), (0.05, 0.4), (0.45, 1), (0, 92)   

   

FKwB XII 14.7, 15.285, 0.29, 0.84, 0.03  317.76, 325.2, 319.98, 320.27 

 (12.39), (18.87), (0.22), (0.85), (0.08)  

 (0, 39), (0, 52.3), (0, 0.7), (0, 2.5), (0, 0.2)  

   

ZBB XII 41.97, ---,0.16, 44.26, --- 313.85, 318.35, 314.40, 315.40 

 (38.79), ---, (0.08), (47.65), ---  

 (0, 118), ---, (0, 0.3,) (0, 138), ---  

   

RG-LL 0.8, 0.068, 0.487, ---, --- 313.44, 316.41, 313.11, 313.02 

 (0.148), (0.033), (0.089), ---, ---  

 (0.50, 1.1), (0, 0.12), (0.32, 0.68), ---, ---  
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